Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Int. braz. j. urol ; 38(5): 687-694, Sept.-Oct. 2012. ilus
Article in English | LILACS | ID: lil-655997

ABSTRACT

PURPOSE: The aim of this study was to evaluate the relaxation in vitro of cavernous smooth muscle induced by a new NO donor of the complex nitrosil-ruthenium, named trans-[Ru(NH3)4(caffeine)(NO)]C13 (Rut-Caf) and sodium nitroprusside (SNP). MATERIALS AND METHODS: The tissues, immersed in isolated bath systems, were pre-contracted with phenilephrine (PE) (1 µM) and then concentration-response curves (10-12 - 10-4 M) were obtained. To clarify the mechanism of action involved, it was added to the baths ODQ (10 µM, 30 µM), oxyhemoglobin (10 µM), L-cysteine (100 µM), hydroxicobalamine (100 µM), glibenclamide, iberotoxin and apamine. Tissue samples were frozen in liquid nitrogen to measure the amount of cGMP and cAMP produced. RESULTS: The substances provoked significant relaxation of the cavernous smooth muscle. Both Rut-Caf and SNP determined dose-dependent relaxation with similar potency (pEC50) and maximum effect (Emax). The substances showed activity through activation of the soluble guanylyl cyclase (sGC), because the relaxations were inhibited by ODQ. Oxyhemoglobin significantly diminished the relaxation effect of the substances. L-cysteine failed to modify the relaxations caused by the agents. Hydroxicobalamine significantly diminished the relaxation effect of Rut-Caf. Glibenclamide significantly increased the efficacy of Rut-Caf (pEC50 4.09 x 7.09). There were no alterations of potency or maximum effect of the substances with the addition of the other ion channel blockers. Rut-Caf induced production of significant amounts of cGMP and cAMP during the relaxation process. CONCLUSIONS: In conclusion, Rut-Caf causes relaxation of smooth muscle of corpus cavernosum by means of activation of sGC with intracellular production of cGMP and cAMP; and also by release of NO in the intracellular environment. Rut-Caf releases the NO free radical and it does not act directly on the potassium ion channels.


Subject(s)
Animals , Male , Rabbits , Muscle Relaxation/physiology , Muscle, Smooth/drug effects , Nitric Oxide Donors/pharmacology , Nitroprusside/pharmacology , Ruthenium Compounds/pharmacology , Cyclic GMP/biosynthesis , Cyclic GMP/chemistry , Cysteine/pharmacology , Guanosine Monophosphate/biosynthesis , Guanosine Monophosphate/chemistry , Muscle, Smooth/physiology , Nitric Oxide Donors/chemistry , Nitroprusside/chemistry , Potassium Channels/chemistry , Ruthenium Compounds/chemistry , Time Factors
2.
Biol. Res ; 27(3/4): 193-7, 1994. ilus, graf
Article in English | LILACS | ID: lil-228578

ABSTRACT

The present work was intended to evaluate the preparation of antigens, as well as the production and characterization of anti cAMP and cGMP antibodies. Such antibodies were obtained from rabbits, and we used 2'O-succinyl cyclic nucleotide derivate, conjugated with human serum albumin, as antigen. The characterization of the antibodies was monitored by their immunoreactivity with the labelled antigen [125I]-cyclic nucleotide. This assay consists in a competition between a labelled and an unlabelled antigen for a fixed number of binding sites present in the specific antibody. The antibodies were specific for the inducing antigens. Cross-reactivity tests showed low degree competition between the immunogen and other antigens. The very high affinity, high quality and specificity of the generated antibodies indicate that they may be used not only in radioimmunoassay and immunocytochemistry methodologies, but also as bioblockers of physiological pathways


Subject(s)
Antibodies , Antigens , Cyclic AMP/immunology , Cyclic GMP/immunology , Cyclic AMP/chemistry , Cyclic GMP/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL